

Solar Soft-Cost Update: Evolving Markets and Challenges

Robert M. Margolis
National Renewable Energy Laboratory

Presented at:
SunShot Prize: Race to the Rooftops
College of Nanoscale Science & Engineering
Albany, NY

April 10, 2013

Outline

- Market and pricing trends by sector, historical and near term projections in context of SunShot targets
- Recent changes in business models and their potential impact on the market and pricing
- Market dynamics in a low-cost, post-ITC world

Global PV Demand

Global installations expected to grow through 2015

- As European demand declines, U.S. & developing world markets expected to grow
 - China expected to replace Germany as world's largest market in '13
 - Japan could be #2 market, with 6-9 GW, in '13 (according to BNEF)
 - U.S. expected to install ~ 4 GW in '13
 - India set to tender ~4 GW in '13

Note: E = estimate, P = projection

Sources: data displayed represents the median figures from the following sources, BNEF (02/08/13, 03/29/13), Deutsche Bank (03/01/13), Goldmann Sachs (01/03/13), GTM Research (January 2013), Photon Consulting (February 2013), Stifel Nicolaus (01/22/13), UBS (03/10/13)

U.S. Installation Breakdown

2012 total U.S. installations were ~3.3 GW

- Residential installs accounted for ~490 MW
- Residential sector has been most steady, with cumulative installs of 1.4 GW through 2012

CA, AZ, NJ and HI dominated residential market in 2012

- 8 other states installed 4 MW+
- Some local markets dominate in some state (Gainesville, FL; Austin, TX)

Sources: GTM/SEIA: U.S. Solar Market Insight Q3 &Q4 2012

U.S. Installed PV System Price Trends

- Have experienced dramatic decline in installed system prices
 - o Residential: ~\$12/W in 1998, ~\$8/W in 2009, ~\$6/W in 2011, and ~\$5/W in 2012
- **▶** DOE/SunShot target is \$1.5/W in 2020 for residential systems

Source: Feldman et al. "Photovoltaic Pricing Trends: Historic, Recent, & Near-Term Projections" (Nov. 2012)

SunShot 2010 Benchmark vs. 2020 Targets

NREL/LBNL benchmarked 2010 soft costs in the following DOE priority areas

- Customer Acquisition (CA)
 - includes marketing and advertising, and system design
- Permitting, Inspection, Interconnection (PII)
- Installation labor
- Finance
- All Other Soft Costs
 - including profit

* For commercial PV, the other soft costs category includes PII.

Residential	2010 (\$/W)	2020 (\$/W)
Total Price	6.60	1.50
Soft Costs	3.32	0.65

Commercial	2010 (\$/W)	2020 (\$/W)
Total Price	5.96	1.25
Soft Costs	2.64	0.44

Module Average Selling Price (ASP)

- Do not expect dramatic increase or decrease in APSs during next couple of years
- 2016 ASP projected to be between \$0.48/W \$0.66/W
- Major system price reductions are not expected to come from PV module during next couple of years

Note: E = estimate, P = projection

Sources: data displayed represents the median, max, and min figures from the following sources: BNEF (02/08/13), Goldman Sachs (01/03/13), GTM Research (January 2013), Photon Consulting (February 2013), UBS (03/10/13)

Soft-Costs: Linked to State and Local Policies

State

- Utility Regulation
- Interconnection Process
- Third-Party Power Sales

Local

- Building and Zoning Codes
- Solar Access
- Permitting Process

As a result, we see significant variation in pricing across jurisdictions

Average Residential System Price by State

- Prices trending downwards in all states
- Q4'11-Q4'12: Median ASP across states fell over \$1/W
- Reported 3rd-party pricing becoming more consistent with host-owned pricing

Note: all average prices, except NY, are representative of all systems in each market between 2.5 kW – 10 kW.

Sources: CSI Database, accessed 12/05/12; MA SREC Program, accessed 12/12/12. Arizona Public Services, accessed 12/12/12, NYSERDA (12/12/12); Maryland Energy Administration (12/11/12). Note: NYSERDA actually represents all "residential" sector data, and is the simple average price per quarter. All other data is weighted by

capacity.

Third Party Ownership (TPO) by State

Sources: CSI Database, accessed 03/13/13; MA SREC Program, accessed 03/13/13; Arizona Public Services, & Salt River Project accessed 12/12/12 (APS), 03/25/13 (SRP); Maryland Energy Administration (03/12/13)

- Share of systems acquired via TPO in the residential sector has increased significantly during past couple of years
 - In 2012 accounted for 90% AZ, 70% CA
 - Growing rapidly in MD & MA
 - TPO now available in 13 states and growing
- But also see new debt products entering (bank loans, PACE, etc.)

Changing Market Dynamics

- Emergence of third party ownership (TPO) is changing market dynamics
 - Recent analysis in LA indicates TPO opened market to broader range of households
- Growing data suggests that customers weigh several factors in buy/lease decision
 - Economics
 - Complexity of process
 - Performance guarantees
 - Maintenance contracts
 - Hedging value

Correlation between PV adoption and household income in Los Angeles, CA

Source: Drury, et al. 2012. Energy Policy, 42, 681-690.

Microinverters in CA Residential Market

- Microinverters used in more than 20% of 2012 small systems in CA (% MW)
- Microinverters made up almost half of all host-owned 2012 small systems in CA
 - 3rd-party installers much less likely to use micro-inverters
 - o Enhanced system performance and features vs. price?

Source: CSI Database, accessed 12/05/12.

Significant Gap Exist Between U.S. and German System Pricing

Gap between German and U.S. system pricing ~\$3/W

- Scale of market (Germany installed ~7.5 GW in 2012) => supply chains efficiencies
- o Paperwork and processes are streamlined
- Financing available through German federal bank (KfW)

Source: German system price: BSW-Solar PV Price Index 5/2012 & 8/2012. Exchange Rate: http://www.oanda.com/currency/average. CA system price: CSI Database, accessed 09/12/12; host owned systems. Installs to-date: Germany (Bundesnetzagentur); US (GTM/SEIA "Q3 '12 Solar Market Insight"); Japan (RTS, "PV Activities in Japan"); China (SolarServer, 11/05/12); 2012 estimates: Germany (BSW-Solar as reported by Solarserver.com (01/10/13)); US (GTM/SEIA, Ibid); Japan (BNEF H2 2012 Japan Insight Call); China (BNEF H2 2012 China Market Outlook)

Moving Towards a Low Cost PV Future

Current PV environment

- 30% federal ITC
- Accelerated depreciation
- Mix of state/local level incentives
- High 1st cost
 - Typical residential rooftop system cost \$20-30k (in 2012)

- TPO/Lease model provides many benefits
- Technology, market, and policies are changing rapidly

Potential future environment?

- What will happen to ITC and MACRS post-2016?
- Mater Limited Partnerships/Real Estate Investment Trusts (REITs)?
 - \$6b tax equity vs. \$900b MPL/REITs
 - Increased pool of capital would lower costs of financing
- What alternative financing mechanisms will emerge?
 - Standardized solar loans?
- Implications of much lower 1st cost?
 - Typical residential rooftop PV system could cost \$5-6k
- Technology changes?
 - o Plug and Play, BIPV, etc.?
- Streamlined permitting, inspection interconnection?
- Combining solar with other services?

Residential grid parity in low-cost, post-ITC case

- Observe residential market threshold below \$3/W:
 - At \$2.50/W, many states in SW and NE at or below grid parity. Others close.
 - At \$2/W, most states are within 25% of reaching grid parity or below grid parity.
 - At \$1.50/W, all but 2 states are at or below grid parity.
- Grid Parity Definition: The point at which the levelized cost of electricity (LCOE) generated by a PV system equals the retail electricity price from the grid.

\$2.5/Watt

\$2/Watt

Assumptions:

- South facing, 25 degree tilt
- 15 year home equity loan
- 8% nominal interest rate
- No Federal, State, or Local
 Incentives
- 1% annual electricity price escalation

- 1% annual PV degradation
- State average electricity rates
- Analysis begins in year 2020, electricity prices scaled accordingly
- Used the System Advisor Model

\$1.5/Watt

At or below parity
Within 25% of parity
Beyond 25% of parity

